首页 > 人物专题 > 正文

清华航发院丨数字孪生在航空发动机燃烧室设计阶段的应用

任祝寅
教授,博士,杰青
研究方向为航空宇航推进理论与技术和航空发动机燃烧仿真与测试技术
的机理认识还很欠缺,各影响因素的作用机理和规律仍有待探索。航空发动机燃烧室中常用的油膜雾化方式涉及的物理过程极为复杂,包括液滴吸收、溅射、表面脱离和边界分离等,其雾化机理的研究尚处于起步阶段。初次雾化对后续的二次雾化及整个雾化性能起着决定性的作用,而目前缺乏模拟初次雾化的有效手段,目前通常依赖经验公式描述喷雾过程,给预测结果引入了极大的不确定性。
图 2 燃烧室设计的部分关键问题以及现有模型、方法对于这些问题的预测置信度示意图
 
燃烧模型方面,当前主要包括基于总包反应的有限速率模型、火焰面类模型以及输运概率密度函数类模型 3 种模型,均存在不足之处。基于总包反应的有限速率模型,如涡破碎(EBU)、加厚火焰面模型(TFM),由于未考虑详细反应动力学,难以准确模拟点 / 熄火、污染物排放等问题;火焰面类模型,如火焰面反应进度变量(FPV)、火焰面生成流形(FGM)模型,由于低维流形假设的限制,难以准确刻画燃烧室内部强烈的湍流 – 化学反应相互作用导致的局部熄火、再燃等问题;输运概率密度函数类模型,对于点 / 熄火、污染物排放等挑战性问题的预测精度较高,但其计算开销一般较高,难以应用于要求快速迭代的设计阶段。综上,现有燃烧模型面临精度与效率的挑战,难以两者兼顾。
 
当然,除了喷雾模型、燃烧模型, 燃烧室的高保真孪生模型还涉及(近壁面)湍流模型、湍流弥散模型、蒸发模型、辐射模型等。这些模型的未来发展方向包括发展基于大涡模拟(LES)方法的湍流模型,解决RANS/URANS 方法对于强旋流、回流、非稳态流动预测不准的问题;发展基于输运概率密度函数(TPDF)方法 [15]、加厚火焰面(ATF)方法 [16] 的燃烧模型,增强对于湍流 – 化学反应相互作用的捕捉能力;发展计算量可接受的初次雾化模型,提升现有的水平集 – 流体体积法(LevelSet-VOF)[17]、光滑粒子法(SPH)[18]  等的计算效率,减轻对于初次破碎经验公式的依赖。由此可见,要实现燃烧室的高保真数字孪生还有很多建模方面的难点需要突破。
 
2.3.2 不确定性量化技术
 
燃烧室的高保真数字孪生涉及的模型众多,每个模型均包含多个参数,而每个参数都包含着不确定性。因此,基于数字孪生开展的性能分析与虚拟试验必然存在不确定性,而量化数字孪生的不确定性是量化数字孪生预测结果置信度的前提,对于评估数字孪生的预测结果至关重要。在 2014 年,美国国家航空航天局(NASA)经过大量调研形成了一份综合分析报告,对计算流体力学所涉及的技术到 2030 年时的需求及能力做了分析和预测 [19]。在这份报告中, 将不确定性量化单独作为一个条目,详细规划了至 2030 年的关键技术节点,足见不确定性量化的重要性。
 
燃烧室数字孪生的输入参数空间包含初始、边界条件参数和模型参数, 如化学反应动力学模型的反应常数、湍流模型、燃烧模型参数等。由此构成的输入参数空间的维度极高。以化学反应动力学为例,从氢气到大分子碳氢燃料的反应机理,由数十到近千步反应组成,而每步反应均有一定的不确定性,导致仅在化学反应动力学模型中就存在海量的不确定性参数。由于参数众多且燃烧室高保真数字孪生的计算成本高,使得燃烧室数字孪生的不确定性量化面临由于高维输入参数空间造成的“维度灾难”。
 
2.4 燃烧室数字孪生关键技术的展望
 
在高保真孪生模型的构建方面, 美国航空航天学会(AIAA)在 2021 年梳理了当前航空发动机整机高保真仿真面临的重大挑战,并提出了在2040 年达到一周内完成航空发动机整机高保真仿真的远景目标 [20]。图3 所示为实现这一远景目标过程中的关键里程碑节点与面临的挑战,从中可以看出多物理场的耦合能力,以及更高的精度与效率是高保真孪生模型的发展趋势。为了解决现有模型不能兼顾精度与效率的问题,构建高效、通用的自适应模型是发展趋势之一。自适应燃烧模型能够根据局部湍流 – 化学反应相互作用特性权衡精度与效率,自适应选取局部最优的燃烧模型。以杨天威 [21] 提出的基于层流有限速率 – 输运概率密度函数的自适应燃烧模型为例,在湍流 – 化学反应相互作用弱的区域,采用基于总包机理的层流有限

相关热词搜索:航空发动机 计算流体力学

上一篇:商飞陈勇总师谈支线客机关键技术与发展方向
下一篇:南京航空航天大学彭生杰教授讲解微纳米结构及新型功能材料设计心得

版权与免责声明:本网转载并注明自其它来源(非本站原创)的作品,目的在于传递更多信息,并不代表本网赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

分享到: 收藏
热门评论